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PRECISION OF SIMULTANEOUS MEASUREMENT PROCEDURES

W. A. Thompson, Jr.

National Bureau of Standards
Washington, D. C.

I. ABSTRACT. We consider the problem of measurement under the
following conditions: The process of gathering the data is such that on any
"given item'only one opportunity for measurement occurs, but it can be
observed simultaneously by several instruments. The items to be meas-
ured are variable so that one cannot obtain replicate observations with the
same instrument which would showý directly the variance of the ifstrument,
ireadings. Procedures. are discussed for estimating the precisions of the
instruments and the variability of the items being measured.

An example due to Simon and Grubbs is helpful in fixing ideas. The
burning times of thirty similar fuzes are determined by several different
observers. We limit our discussion to the data taken by observers A and
C; hence there are two determinations of the burning times of thirty differ-
ent fuzes or sixty observations in all. If each of the fuzes had the same run-
ning time (which is the manufacturer's goal) and if both of the observers
were absolutely accurate, then all sixty observations would be equal. How-
ever, considerable inequality in such data always occurs due to variation in
the manufacturing process and inaccuracy of the observations. It then
becomes desirable to use the sixty observations to. answer as many ques-
tions as possible about measurement bias and precision, mean fuze running
time, and variability of burning times about their mean.

2. THE MODEL. With the verbal description of the previous section

in mind, consider the following mathematical formulation. Let x1 , .X.., xN

denote the true values of the items to be measured. Assume that x,. .. ,xN

constitute a random sample of size N selected from a population having
mean fA and variance a- ? . Each of the items in this sample is then
measured by p instruments. y.. is the measurement of the h item

(i=l, . . . ,N) according to the jth iAstrument (j 1,... ,p). The consequence
of this measurement is that an instrumentation error e.., chosen at random
from the jth instrument's population of errors, is added to the true value

of the ith item:

(2.1) Yij X . + e...
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The instrumentation errors are taken to be uncorrelated among
themselves and also uncorrelated with the items selected for measure-
ment. The mean and variance of e.. are(2j and a 2, respectively; pj

.th.i
may be called the bias of the j instrument.

Denoting the vector (Y : " y) by Yi, we may think of Y Y

as constituting a sample of size N n+l from a p-variate distribution
with mean vector (M +3 L. +p) and dispersion matrix

(2.2) .

"2 2 2 2
0" o- + o*

p

Notice, in passing, that if all instrument variances are equal, then
the model becomes a completely random one-way layout and may be
analysed by the methods which appear, for example, in Scheffe [5).

A paragraph on notation will perhaps be helpful. S. will be used
as a more succinct notation forp.-+-, j = 1, ... p. W will frequently
write = (a- .. ) when we mean that *.. is the element in the jt row

an th' J- srItS• i/) , A a and
and j column of.$ In the same spirit = ( A = (a/)

S = (sj.) will be common notations. Here

N
(2.3) a. =i (Yij " -j) (Yij' " ' *

and s.., is the usual unbiased estimate of a ..- , i.e. sj = ajj n.

3. POINT ESTIMATES. In [2/, rubbs recommends certain
estimates of item and instrument variance. For p = 2 instruments,
these estimates are
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2 2 2(3.1) T ". s 1 2 a' I Io•S - s1 and a- 2,22 - s2,

where •--is to be read "is estimated by". For p Z _3, Grubbs recommends

2 2
R" "pp- 1) j<j! ji

2 2 P 2
(3.2) P- 1  j2 slj (p-) (p-2) 2E..<j/ ,

with an analogeous estimate of the other instrument variances. Gaylor LiJ
shows that Grubbs' estimate of cr 2 is equivalent to a familiar variance
component estimate. These estimates are reasonable in that they have
the correct dimensionality, are unbiased, and have appropriate symmetry
properties when the instrument labels are interchanged. Further, if the
underlying distribution is normal, then Grubbs' estimates are simple
functions of the sufficient statistics and in the case p=2 they have a max-
imum likelihood property. However, as Grubbs has verbally pointed out
his estimates are unreasonable in that they frequently assume negative
values even though the parameters themselves must be non-negative by. their very definition.

For p=2 this objectional characteristic has been eliminated in [8];
here the altered estimates of table 1 have been proposed. The top line
of this table yields the estimates (3. 1) under conditions where they are
non-negative. The remaining entries show how Grubbs' estimates can be
modified when negativity would result from using (3. 1). These modified
estimates have been derived, under normality assumptions, from a prin-
ciple of restricted maximum likelihood which is fairly well accepted in
other brances of statistical practice. A tilda placed over a parameter in-
dicates its restricted maximum likelihood estimate.
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Table 1. Non-negative estimates in the two instrument-case.

C onditions a -i -1 2

Sll>_Sl 11z Sll - l22 - 12

szz2> slz>

s2Zssl1>sii Sll 0 S + s -2s

s 5 B +s -2s0
11Ž s12>s2 22 11 22 12

s12< 0 0S s 22
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4. RELATIVE PRECISION. It is clear that if the instrumentation

of an experiment is to be effective then the instruments must be precise

relative to the variability of the quantity being measured. A frequently

quoted rule of thumb is that the instrument precision should be an order

of magnitude greater than that of the item being measured. Such a

statement has no firm meaning unless a measure of instrument precision

and a measure of item variability have been agreed upon. Here we adopt

A1 = a/a- 1 as a measure of the relative precision of the first instrument.

Then, for example, the above mentioned rule of thumb would become
A 1 "i O..

In the two-instrument case, assuming normality, we may~use a result'*.

of Roy and Bose [3] to make inferential statements of a statistical nature

concerning the parameterA 1 , In our terminology their result states that

(4.1) all -1 a l 12 a-I1

Nhas the t-distribution with n - 1 d. f. where mAy = that t ati
Noting that (r l/0' 21- +• we may verify that the quantity (4. 1)

12 .1
is less than t if and only if

(4.2) a2 n

1 1 -a 1 2 + -

Hence if tC( is the upper 0( percentage point of the t- distribution with

n-l d. f. then the square root of the. right hand side of (4. 2) provides a

lower confidence bound forA. , the confidence coefficient being 1-6.
The inequality (4.2) can also~be used for the purpose of hypothesis testing

For example, we may rejectA 1> 10 at the significance level q( if (4. 2) is
violated with AZ - 100"

5. A SIMULTANEOUS CONFIDENCE REGION. For some purposes
it may not be enough to consider relative precision; we may be interested in

the actual non-relative precisions and the item variability. Estimation of

0
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the parameters oT 1, , """, was discussed in section 3; but how
p

reliable are estimates? This question is dealth with in 9 again under
assumptions of normality.

In the two-instrument case, the probability is at least 1 - 2 CC that
the following three relations hold simultaneously

2 - a12 K IM(a11az2)a

(5.1)

(a, a 2 )-K -< a IM [a . a a +a 2 2 -2 a1 2 )] ; i 1, .

Here K and M are to be found in Table 2 under the desired value of 2q.



Table 2. The table gives values of K and M which 181
yield 1 - 2a confidence regions when used in conjunction

Swith the relations (5.1).

2a .01 .05

3 99.78 99.72 19.79 19.71
4 12.38 12.33 4.148 4.077
S .3.980 3.931 1.726 1.665
6 1.903 1.353 .9636 .9088
7 1.120 1.078 .6290 .578G
8 0.7459 .7076 .4516 .40o2
0 0.5389 .5031 .3453 .3022
10 0.4120 .3782 .2761 .2357
11 0.3282 .2963 .2280 .1901
12 0.2608 .2395 .1932 .1573
13 0.2272 .1983 .1663 .1328
14 0.1951 .1075 .1464 .1140
15 0.1702 .1438 .1301 .09925
16 0.1505 .1251 .1169 .08738
17, 0.1344 .1100 .1060 .07767
18 0.1213 .09772 .09632 .06062
19 0.1103 .08752 .08904 .06287
20 0.1009 .07896 .08237 .05713
22 .08610 .06546 .07152 .04796
24 .07484 .05538 .06311 .04098

S 26 .06605 .04763 .05641 .0355428 .05901 .04152 .05098 .0312130 .05328 .03660 .04644 .02768
35 .04272 .02778 .03796 .0212740 03556 .02200 .03205 .01700
45 .03040 .01797 .02771 .01308
50 .02652 01503 .02440 .01176
60 .02109 ,01110 .01967 .00875
70 .01748 .00362 .01646 ,00684
80 .01492 .00694 .01415- .00553
60 .01300 .00575 .01241 .00460
I00 .01132 .00486 .01104 .00390
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For more than two instruments a similar result is valid. We have

the following relations with probability at least 1 -2(

(52)max [aj /K- M (a a
• j $ j/

Y < min [a.K + M(a.. aj)]

!- -33 .33.

max I(all -a.)K- M[a + -a 23
11l lj IlI l. ij j

2:: min (a1  -a .)K+M a +a Za 2j

11 €j 11 1z )

2 2
plus p - 1 similar inequalities involving 0- 2 *' '" " Unfortunately,p
for p in excess of two, tables of K and M are unavailable. The only
result which is currently ready for use is an approximation valid for
large n: Choose 2 to satisfy P() • -p2) = 1 - 26r, write K = M = l/2•l a g n C h o eP - -'! gý n -p + 2

and substitute this common value in (5. 2). 1 feel obliged to point out
that for p = 2, the only case where exact values are available, this
approximation is rather poor.

6. NUMERICAL EXAMPLE. Returning to the fuze burning time
data, we may identify observer A as the first instrument and observer
C as the second. From Table I of Grubbs' paper [Z] we obtain
a,1 = 1.3671, a2 2 = 1. 3227, a = 1.3320 and n = 29. From the third

row entry of our table 1, we estimate a- = .21,1 03 and 1

By the method of section 4 we obtain, for example, that the relative
precision of observer C exceeds 5. 1 with a confidence of 95%.

Alternatively, from a hypothesis testing point of view we would reject
the rule of thumb requirement, A 2 > 10, at the 5% level. The relations

(5. 1) and table 2 yield the following 95% simultaneous confidence region:
16<0<; 32, 0<o" < 09 and 0<0- < .07. In calculating these

__-1 2-

simultaneous confidence intervals we have replaced all negative lower
bounds by zero. Notice that the confidence intervals bracket their
respective estimates and hence, in the confidence region sense, indicate
the uncertainty of these estimates.
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